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ABSTRACT 

Diabetes mellitus is a global health issue affecting millions of people, requiring regular 

glucose level monitoring. Current non-invasive methods include urinalysis (colorimetry and 

biosensors) which are laboratory-based and lack user-friendliness, limiting their practicality 

for continuous glucose monitoring. Although promising, research on smartphone-integrated 

laser refractometry for glucose detection remains limited. To address this need, a non-contact 

smartphone-based laser refractometer for glucose monitoring was developed. This prototype 

measures the refractive indices of urine by analyzing the refracted length of a laser line, 

which is correlated with fasting blood glucose concentrations. The proposed prototype uses 

a smartphone to capture a relatively high resolution images of a laser line caused by total 

internal reflection through the rod and refraction caused by the urine. Assessments were 

made through a series of controlled glucose concentrations, varying turbidities, different 

volumetric samples, and a shelf-life. Volumetric and shelf-life assessments showed no effect 

to the results whereas as turbidity assessments proved the proposed prototype is limited to 

57 nephelometric turbidity units (NTU) of the urine samples. Results of fasting glucose 

levels measured in urines using the developed system were compared to fasting blood 

glucose laboratory results, yielding with correlation coefficients of 0.89 and a sensitivity of 

4.8 mg/dL. The system is inexpensive, making it accessible, and is suitable for telemedicine 

applications, providing remote monitoring options for patients. This approach paves the way 

for clinically crucial glucose detection in diabetics without the need for invasive finger-prick 

blood sampling. 

Keywords: Laser optical measurement, refractometer, non-invasive, glucose monitoring, 

smartphone 
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Pembangunan Pengukuran Tanpa Sentuhan Glukosa dalam Urin oleh Refraktometri 

Laser Berasaskan Telepon Pintar untuk Pemantauan Berterusan Diabetes 

ABSTRAK 

Diabetes mellitus merupakan isu kesihatan global yang menjejaskan jutaan orang, 

memerlukan pemantauan tahap glukosa secara berkala. Kaedah tidak invasif semasa 

termasuk analisis air kencing (colorimetry dan biosensor) yang berasaskan makmal dan 

kurang mesra pengguna, membataskan praktikalitinya untuk pemantauan glukosa secara 

berterusan. Walaupun menjanjikan, penyelidikan mengenai refraktometri laser bersepadu 

telefon pintar untuk pengesanan glukosa masih terhad. Bagi menangani keperluan ini, 

sebuah prototaip refraktometer laser berasaskan telefon pintar tanpa sentuh untuk 

pemantauan glukosa telah dibangunkan. Prototaip ini mengukur indeks refraktif air kencing 

dengan menganalisis panjang laser yang dipantulkan, yang berkorelasi dengan kepekatan 

glukosa darah puasa. Prototaip yang dicadangkan ini menggunakan telefon pintar untuk 

menangkap imej dengan resolusi yang agak tinggi bagi garis laser yang disebabkan oleh 

refleksi dalaman total melalui rod dan pembiasan yang disebabkan oleh air kencing. 

Penilaian dilakukan melalui beberapa siri kepekatan glukosa terkawal, kekeruhan yang 

berbeza, sampel volumetrik yang berbeza, dan jangka hayat. Penilaian volumetrik dan 

jangka hayat menunjukkan tiada kesan terhadap hasil, manakala penilaian kekeruhan 

membuktikan bahawa prototaip yang dicadangkan terhad kepada 57 unit kekeruhan 

nephelometrik (NTU) bagi sampel air kencing. Keputusan tahap glukosa puasa yang diukur 

dalam air kencing menggunakan sistem yang dibangunkan dibandingkan dengan keputusan 

makmal glukosa darah puasa, menghasilkan pekali korelasi sebanyak 0.89 dan sensitiviti 

sebanyak 4.8 mg/dL. Sistem ini murah, menjadikannya boleh diakses, dan sesuai untuk 

aplikasi teleperubatan, menyediakan pilihan pemantauan jarak jauh untuk pesakit. 
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Pendekatan ini membuka jalan untuk pengesanan glukosa yang penting secara klinikal 

dalam pesakit diabetes tanpa perlu sampel darah melalui cucukan jari yang invasive. 

Kata kunci: Pengukuran optik laser, refraktometer, tidak invasif, pemantauan glukosa, 

telefon pintar 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Study background 

Diabetes mellitus is a well-known chronic metabolic disorder that is caused by an 

increase in plasma glucose levels. This happens due to lack of production or action of insulin 

in the body. Diabetes mellitus can be mainly categorized into three types namely Type 1, 

Type 2 and gestational (Lovic et al., 2020). Type 1 diabetes mellitus (T1DM) happens 

because pancreatic β-cells are destroyed by the autoimmune system. T1DM is believed to be 

mainly genetic which explains why it can occur from a young age known as “childhood-

onset diabetes” (Egan et al., 2019; Lovic et al., 2020). Type 2 diabetes mellitus (T2DM) on 

the other hand is the more common of the three types of diabetes mellitus. T2DM is 

developed in a person because of defective insulin secretion and unresponsiveness of the 

body to insulin. This can happen due to lack of a healthy lifestyle and diet (Galicia-Garcia 

et al., 2020). Gestational diabetes happens during pregnancy due to carbohydrate intolerance. 

It is very common and will most likely resolve post-delivery. However, mothers are usually 

assessed after birth since they are at risk of T2DM (Sweeting et al., 2022). 

Estimates predict for the year 2045 it is expected that the number of diabetes mellitus 

patients will reach a staggering 629 million (Chen et al., 2021). It is also estimated that 90% 

of the current number of diabetic patients are of T2DM (Chen et al., 2021). The problem 

with diabetes arises when 50% of the patients are undiagnosed. This becomes extremely life-

threatening when the patient remains unaware of their condition and continues to lead an 

unhealthy lifestyle especially in rural areas where they have no access to proper healthcare. 

When a person is diagnosed with diabetes, it is crucial for them to monitor their glucose 
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levels. A certain level of glucose in the body should be maintained to avoid complications 

such as kidney damage, stroke, and heart disease (Kaul et al., 2013).  

Diabetes monitoring can be done frequently through non-invasive methods which 

include microwaves, spectroscopy, electrochemical, fluorescence and urinalysis. According 

to studies of Cebedio et al. (2020); Hanna et al. (2020); Hanna et al. (2022); Omer et al. 

(2020) and Tanaka et al. (2020), microwaves can be used to measure the permittivity of 

different body parts. Spectroscopy includes Raman, capacitance, infrared and fluorescence. 

Raman spectroscopy by Bezuglyi et al. (2018); Li et al. (2019); Lundsgaard-Nielsen et al. 

(2018) and Zou et al. (2016), requires a Raman spectrometer to measure the spectra obtained 

from different parts of the body, analyzing different peaks which are correlated with glucose 

levels. According to Dutta et al. (2019), Rassel et al. (2023), and Yao et al. (2021), 

capacitance spectroscopy measures the different capacitance of body parts or samples by 

placing them between two sensors connected to a multimeter. Infrared spectroscopy uses 

infrared to measure the absorbance of the infrared after going through a sample. Although 

these methods result in high correlation coefficient, the devices used are highly complex. 

For both electrochemical and fluorescence spectroscopy, these methods utilize catalysts 

which react with glucose. According to Lin et al. (2022); Lipani et al. (2018); Ribet et al. 

(2018); Sempionatto et al. (2019) and Sempionatto et al. (2021), electrochemical methods 

use glucose oxidase with glucose to produce hydrogen peroxidase which yield electrical 

energy that correlates with glucose levels in the sample (interstitial fluid). Fluorescence on 

the other hand uses catalysts such as silver nanocube (AgNC) (Jiang et al. (2019), carbon 

nanoparticles (CNPs) (Lu et al. (2021) and palladium-based nanostructures (Nie et al. (2020) 

which will react with glucose. The resulting fluorescence of these reactions and catalysts are 

measured by a spectrophotometer.  
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Urinalysis includes colorimetry and biosensors for measurement of glucose, protein, 

creatine, albumin and more. For colorimetric urinalysis, Pohanka et al. (2024) and Tohl et 

al. (2024) analyzes the changes in colour in test strips, while Feng et al. (2023) and Firdaus 

et al. (2022) analyzed the colorimetry of gold nanoparticles. Work reported by Tohl et al. 

(2024) measured creatine and albumin by change in colours of test strips with a limit of 

detection 1 mg/dL with a correlation coefficient of 0.73. Stability was an issue because the 

results of test strip colours vary due to urine colour variation. Similarly Pohanka et al. (2024) 

proposed a simpler setup to measure colorimetry of test strips for glucose detection with a 

limit of detection of 1.98 mg/dL. However, an incubation of 60 seconds of the samples is 

necessary for optimum results. Work reported by Feng et al. (2023) studied the colorimetry 

of gold nanoparticles (AuNPs) producing highly sensitive results of 0.0002 - 0.0018 mg/dL 

for glucose detection but at the expense of slow detection rate (190 seconds) and expensive 

biosensors fabrication. Work by Firdaus et al. (2022) also did a study on AuNPs colorimetry 

for glucose detection with a high sensitivity of 0.00008 mg/dL but requires optimum 

conditions of the samples (pH = 7, temperature = 30 °C and incubation of 30 minutes) and 

complex and expensive biosensors fabrication.  

1.2 Problem statement 

The current methods for urinalysis using colorimetry and biosensors often rely on 

laboratory-based setups and are not user friendly, limiting their accessibility and practicality 

for continuous glucose monitoring (Feng et al., 2023; Firdaus et al., 2022; Hajimiri et al., 

2023; Nguyen et al., 2023; Fenoy et al., 2022). Although colorimetry is inherently a non-

invasive method, the results are qualitative in nature. It is important to obtain quantitative 

rather than qualitative results for diagnosing, monitoring and managing the disease to ensure 

proper medical care is addressed. Despite the promising potential of integrating smartphones 
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with laser-based refractometry for glucose detection, Diez Alvarez et al. (2023) reports that 

research in this area remains limited. This gap highlights the need for a portable, affordable, 

and user-friendly solution for non-invasive glucose monitoring, offering ease of use for 

patients managing diabetes. By implementing smartphones and refractometry, this approach 

provides a non-invasive and rapid method for glucose monitoring, offering significant 

advantages over conventional invasive methods and the complex non-invasive methods 

proposed in existing research. 

1.3 Scope of study 

i. The medium used for measuring glucose will be urine samples. 

ii. The minimum sample size of 132 (Sadiq et al., 2024).  

iii. The sample collected disregard the age, gender and diabetes status. 

iv. The glucose measurement results will be correlated with glucose levels obtained 

from blood reports and glucometer reading supplied by the collaborators.  

v. The mechanisms used for glucose measurement in urine are based on total internal 

reflection and law of refraction. 

1.4 Research questions 

i. How smartphone and laser can be combined to measure glucose levels in urine? 

ii. What are the effects of volume variation, turbidity and shelf-life of urines on 

measurement results? 

iii. What is the correlation between the measured refracted laser length and laboratory 

results of fasting glucose levels? 
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1.5 Hypothesis 

i. A smartphone and laser, combined with optical-based refractometry, can be designed 

to measure the refractive index in urine, which correlates with blood glucose levels. 

ii. The volume variation, turbidity and shelf-life of urines have no effect on the 

measurement results.  

iii. The length of measured refracted laser length is inversely proportional with the 

laboratory results of fasting glucose levels. 

1.6 Objectives 

i. To design and fabricate a smartphone-based laser refractometer for non-intrusive 

measurement of glucose in urine.  

ii. To assess the developed smartphone-based laser refractometer, accounting for 

variations in urine volume, turbidity, and shelf-life. 

iii. To assess the efficacy of the smartphone-based laser refractometer for glucose 

measurement in urine with laboratory results.
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CHAPTER 2  
 

 

LITERATURE REVIEW 

2.1 Overview 

In the current innovation of biomedical development, there are three different types 

of glucose measurement methods i.e., invasive, semi-invasive and non-invasive (Figure 2.1). 

Invasive methods involve deep penetration (capillaries, veins or tissues) on parts of the body, 

to obtain samples for analysis. Semi-invasive methods, however, require only shallow 

penetration (dermal or subcutaneous layers) on parts of the body, causing less intrusion. 

Non-invasive methods go a step further by eliminating the need for any penetration of the 

body, significantly reducing both discomfort and potential harm to the patient. 

 

Figure 2.1: Overview of types of glucose measurement methods 

2.2 Current semi-invasive and non-invasive glucose measuring devices 

The current commercial semi-invasive and non-invasive glucose monitoring devices 

available in the market are as shown in Table 2.1. The apparent issue with these devices is 

Glucose measurement methods 

Invasive Semi-Invasive Non-invasive 

Microwave 

Raman 

spectroscopy 

Spectroscopy 

Infrared 

spectroscopy 

Electrochemical 

Fluorescence 

spectroscopy 

Near-infrared Mid-infrared 

Urinalysis 

Biosensors Colorimetry Capacitance 

spectroscopy 
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that technology uses patches which means patch life is a limitation which can last from one 

day up to 90 days. These patches can also be costly for the user in the long run.  

Table 2.1: Current commercial glucose monitoring devices 

 

2.3 Invasive glucose monitoring 

The current conventional glucometers are considered invasive since pricking is 

necessary for the user. Patients are required to prick their fingers to obtain blood which is 

applied to strips for the glucometer to read. Chemical reactions of the blood will then be 

converted to electrical energy to determine the blood glucose levels (Gonzales et al. (2019).  

2.4 Semi-invasive glucose monitoring 

Semi-invasive, or minimally invasive methods are similar to invasive methods as 

they also require the extraction of bodily fluids for analysis. Bollella et al. (2019) and 

Name Freestyle 

Libre 

(Abbott 

(2018) 

Platinum 

G6 

(Dexcom 

(2018a) 

Platinum 

G5 

(Dexcom 

(2018b) 

Eversense 

(Senseonics 

(2018) 

SugarBeat 

(Nemaura 

(2018) 

Manufacturer Abbot Dexcom Dexcom Senseonics Nemaura 

Medical 

Technology Inserted 

sensor 

Inserted 

sensor 

Inserted 

sensor 

Implanted 

sensor 

Implanted 

sensor 

Patch life 14 days 10 days 7 days 90 days 1 day 

Accuracy 99% - 97% 99.1% 95% 

Device cost RM 280.00 - RM 

2660.00 

- RM 168.00 

Patch cost RM 19.60 - RM 40.88 - RM 11.20 



8 

Chinnadayyala et al. (2021) both conducted experiments using highly porous microneedle-

based electrodes. Bollella et al. (2019) conducted only in vitro testing which achieved a 

linearity range of 1.8-180 mg/dL with a processing time of two minutes. Whereas 

Chinnadayyala et al. (2021) used microneedles made of platinum black. In vitro tests were 

done which demonstrated a linearity range of 18-360 mg/dL and a processing time of two 

seconds. In this work, in vivo tests were conducted which showcased stability of up to seven 

days. 

2.5 Non-invasive glucose monitoring 

In the current state of non-invasive glucose monitoring studies, many methods are 

studied. Non-invasive methods can be divided into several main categories consisting of 

urinalysis, Raman spectroscopy, infrared spectroscopy, microwaves, capacitance 

spectroscopy, fluorescence and electrochemical.  

2.5.1 Urinalysis 

A well-known non-invasive method of glucose monitoring use the urine strips. Urine 

strips contain multiple chemical substances that will change colour when in contact with 

urine. Colours apparent on the strips are compared to a reference to determine the levels of 

different compositions found in urine such as glucose (Pighi et al. (2023). 

2.5.2 Colorimetry 

Tohl et al. (2024) approached this method using smartphones to analyze the 

colorimetry of the strips. The strips used in this study are One Step DUSTM 12AC. The 

camera used in this study is the Sony IMX219 camera module. The device uses a box with 

light sources and multiple reference points in order to calibrate. Once calibrated, the 

difference between colours of the test strips and reference colour blocks helps determine the 
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values of glucose, bilirubin, ketones, specific gravity, blood, pH, protein and much more. 

The result of the proposed device proved to have a correlation coefficient of 0.73 while 

visual assessment had a correlation coefficient of 0.63. It was found that the values obtained 

from the proposed method tend to be lower than their clinical values. Also, urine colour can 

affect the results of the test strips used, indicating a weakness in this method. 

Pohanka et al. (2024) also used smartphones to analyze the colorimetry of test strips. 

In this research, standard urine strips (DekaPhan Leuco) were used. As for the camera, the 

proposed method used a Redmi Note 11 Pro with settings of 1 zoom, automatic flash, and 

automatic white balance. The images obtained are 8bit jpeg with 5 image acquisitions for 

each sample. The colours in the images are then analyzed using GIMP 2.10.34. The results 

obtained in terms of glucose were split into three (red, green and blue). For red, the 

coefficient of determination was R2 = 0.995 while as for green and blue it was R2 = 0.991 

and R2 = 0.973 respectively. Similar to Tohl et al. (2024), this method used test strips which 

means that urine colour can affect the results of the system.  

As for Feng et al. (2023), artificial intelligence was utilized to analyze colour changes 

while being able to deter environmental factors such as ambient light. In this study, AuNPs 

coupled with Benedict’s reagent were used. The changes in colour are analyzed via an 

android application using a smartphone. The results of this study had a coefficient correlation 

of R2 = 0.876. The proposed method however had a slow detection rate of 190 seconds and 

expensive biosensor fabrication. 

Firdaus et al. (2022) also used AuNPs for detection of glucose. It was evident that 

the blue hue of AuNPs changed to red with the introduction of glucose. An application for 

smartphone was also developed to detect these changes in the solution. As a reference, 
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ultraviolet-visible spectrometry was also done alongside the app for comparison. Results 

from this study had a sensitivity of 0.00008 mg/dL and a correlation coefficient R2 = 0.998. 

This method was difficult to replicate because the urine samples must meet certain 

parameters (pH = 7, temperature = 30 °C and an incubation time of 30 minutes) and also had 

expensive biosensor fabrication.   

While studies in colorimetry transform the qualitative nature into a quantitative one, 

the methods mentioned above can be affected by the colour variability of urine, as reported 

by Tohl et al. (2024) and Pohanka et al. (2024). Urine colour variation can be caused by 

hydration, diet, medication and health condition Skrajnowska et al. (2024). This poses as a 

limitation because the user must meet certain conditions to achieve accuracy and consistency 

of their proposed methods. and In comparison, Feng et al. (2023) achieved a detection rate 

of 190 seconds, whereas Firdaus et al. (2022) reported an incubation time of 30 minutes.  

2.5.3 Biosensors 

Hajimiri et al. (2023) however approached urinalysis by means of biosensors. Tablet 

based sensors were developed consisting of glucose oxidase (GOx) and horseradish 

peroxidase encapsulated in dextran. The tablets are incubated together with urine and a 

phosphate buffer solution. The purpose of the buffer solution is to dilute and adjust the pH 

value of the urine samples. After five minutes of incubation, the colour of the solution is 

observed where urine with glucose will produce a blue solution. Ultraviolet-visible 

spectrometer is used to measure the absorbance (at 652 nm) of the final blue solution which 

correlates with the glucose levels. Results showed a calibration curve of R2 = 0.9899. 

Similarly, the proposed method requires optimum conditions of the urine samples (pH = 7.4 

and temperature = 60 °C and incubation time of five minutes).  
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Nguyen et al. (2023) had a similar approach but used zinc sulfide doped manganese 

encapsulated by chitosan. 1500 µL of 100 mg/L of the solution is placed in a cuvette where 

glucose solutions are later added. Glucose solutions are added with increments of 3.6 mg/dL. 

The final solution photoluminescence is measured using a spectrophotometer with a 10 nm 

slit. With the increase of glucose concentrations, it was found that the absorbance at 230 nm 

decrease with a coefficient correlation of R2 = 0.993. Nguyen et al. (2023) further the 

research by adding phosphate buffered saline to the solution. This is expected to improve the 

study where it resulted in R2 = 0.997. It is also noted that the absorbance of the solution with 

phosphate buffered saline was measured at 365 nm.  

Fenoy et al. (2022) used graphene field-effect transistors (gFETs) alongside a multi 

amino polymer to bind with GOx. When samples induced with glucose were introduced to 

the solution, it was noticed that the current of the transistors dropped. The changes in this 

transistor correlate with the glucose levels in the samples. This study achieved a correlation 

of R2 = 0.998 at the expense of detection rate of 190 seconds and complex biosensor 

fabrication process.  

Similar to colorimetry, biosensors as a method require incubation time with the 

addition of expensive and complex fabrication of the said biosensors. This can be a challenge 

for the users especially if the application of glucose reading is for isolated areas or even for 

the average person. Additionally, biosensors often have a limited shelf-life which can further 

be a limitation for this method.   

2.5.4 Microwave sensor 

Cebedio et al. (2020) designed a non-invasive glucometer by means of a microwave 

sensor. The measurement of blood glucose levels in this study depends on the 
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electromagnetic properties of blood, specifically permittivity. A resonator was found to be 

most suitable for measuring the permittivity of the blood which is correlated with blood 

glucose levels. In this study, the subject was ordered to place a finger on the resonator which 

is connected to a computer for further analysis. Results showed a correlation coefficient, R2 

= 0.91. The high sensitivity of the system was attributed to the considerably large contact 

volume and reduced with the decrease of contact volume due to lower interaction of the 

microwaves with the blood tissue. 

Hanna et al. (2020) introduced a flexible sensor so that it is easier to fit to body parts 

such as the arm or legs. This would also allow more comfort and freedom of movement for 

the user. The system uses two electromagnetic sensors: first a multiband slot antenna and a 

multiband-reject filter. The microwaves from these sensors operate from 500 MHz up to 3 

GHz. This makes it easier to reach veins, arteries, muscle, and fat tissues in the skin. Tests 

were done using fetal bovine serum and glucose solutions from 90 mg/dL to 126 mg/dL with 

increments of 10 mg/dL. Results from the antenna operating at 1.15 GHz were compared to 

a commercial glucometer to which the correlation of R2 = 0.98 was achieved. While results 

from the flexible filter operating at 1.575 GHz achieved R2 = 0.95. This study, however, was 

only done in vitro in fetal bovine serum rather than actual human subjects.  

Following the earlier work, Hanna et al. (2022) further developed a continuous 

glucose measuring method wirelessly using flexible sensors operating at frequencies from 

0.5 to 4 GHz to penetrate human tissues of the human leg. Reflected waves are then recorded 

to determine the changes in terms of dielectric properties which correspond to the glucose 

levels in the blood. The final product was tested on animals and humans with an accuracy of 

100% and 99.01% respectively.  
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Omer et al. (2020) also used microwave sensors for glucose monitoring. The design 

uses four complementary split ring resonators arranged on a thin sheet of FR4 dielectric 

substrate for the fingertips. The setup consists of two coaxial cables which are for 

transmitting and receiving. The setup is then connected to a radar board operating about 2.4 

– 2.5 GHz in the Industrial, Scientific and Medical (ISM) band for transmission to a 

processing machine (i.e., laptop). Optimal results could only be achieved provided the user 

remain stationary throughout the measurement process to avoid the effects of vibration.  

Tanaka et al. (2020) also performed photoacoustic spectroscopy. The proposed 

method was differential continuous wave photoacoustic spectroscopy which uses the 

amplitude modulation of dual wavelengths. Two lasers are set to turn on and off at the same 

frequency of 380 kHz but 180 degrees out of sync with each other. Wavelengths of 1382 and 

1610 nm were used to ignore water. Alongside the proposed method, three conventional 

methods were also done for comparison. The correlation coefficient from this study was 

found to be from 0.58 to 0.80. This study was conducted on different parts of the body which 

led to an issue in accuracy depending on which part of the body was used. Different parts of 

the body introduce different perfusion rates causing discrepancy in the measurement errors.  

Microwave face challenges due to the complexity of the human body. Studies such 

as Hanna et al. (2022) and Tanaka et al. (2020) proposed wearables, but these approaches 

demonstrated varying sensitivity and accuracy depending on the body part used. 

Additionally, these methods are limited by the requirement for minimal movement, this is to 

maintain a stable signal to capture the data more accurately. This makes it necessary for 

subjects to remain stationary which is a significant inconvenience.  
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2.5.5 Raman spectroscopy  

Bezuglyi et al. (2018) conducted a study using ellipsoidal reflectors. A device was 

designed using a laser diode, telescoping system, and prism. Peak values were apparent at 

wavelengths 960 to 990 nm. A finger is placed between the telescoping system and the prism 

where the laser on the finger will emit an optical radiation producing the back-scattered light 

from the prism which is collected by an ellipsoidal reflector for Raman spectroscopy 

analysis. While the study was done in vitro, biological challenges such as blood oxygen 

levels can affect the results of the proposed method.  

Zou et al. (2016) used urine of the patients instead. Urine samples are placed in a 

dish where a 782 nm diode laser focuses on the sample. Urine samples are mixed with Ag 

colloids which proved to improve the Raman scattering. From this experiment the Raman 

spectra can visualise the different peaks at different ranges. It was observed that peaks at 

725, 808, 1136 and 1350 cm-1 (see Table 2.2) were significantly higher in diabetes mellitus 

(DM) patients compared to non-DM patients. The results of this study achieved a sensitivity 

and specificity of 85% and 90.5% respectively with an R2 of 0.836. While the claims of this 

method are low-cost, it requires complex fabrication of Ag colloids as biosensors. 

Table 2.2: Peaks of Raman spectroscopy of urine and their assignments (Zou et al. 

(2016) 

Peak position (cm-1) Assignments 

527 Cholesterol ester/nucleic 

acids 

665 Uric acid 

725 Adenin, coenzyme A 

808 Albumin 
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Table 2.2: continued 

889 D-galactosamine 

1003 Phenylalanine 

1136 Phenylalanine 

1350 Guanine 

1465 Tryptophan 

 

Li et al. (2019) performed Raman spectroscopy of blood in vessels. A portable optical 

coherence tomography was used in this study which had a light source with a wavelength of 

830 nm. Table 2.3 shows the peak position (cm-1) and the corresponding components. The 

laser targets the nailfold of the subject at a depth of 200 µm. This study was performed on 

volunteers where R2 of 0.97927 was obtained. The issue faced by the author was that no 

current was detected when the concentrations were less than 5.4 mg/dL. This method also 

requires 30 minutes of reading time to reach a higher and more significant peak value. The 

author also reported decline in performance after three months. 

Table 2.3: Peaks of Raman spectroscopy of micro vessels and their assignments (Li et 

al. (2019) 

Peak position (cm-1) Assignments 

Microvessles Blood 

650 643 Ascorbic acid 

758 752 Trp 

837 827 Fructose 

858 855 Tyr, lac 

885 - - 
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Table 2.3: continued 

902 898 Tyr 

945 940 Citric acid 

978 971 Fibrin 

 

Lundsgaard-Nielsen et al. (2018) developed a confocal Raman spectrometer that 

measures blood glucose through the human skin, specifically at the thumb. The setup uses a 

continuous-wave diode laser at 830 nm wavelengths. First, the laser is redirected to human 

skin via a dichroic mirror so that it is concentrated on the base of the thumb while the base 

of the thumb is placed on a 500 µm magnesium fluoride window. When this happens, the 

interaction creates a Rayleigh scattered light, broadband fluorescence background and 

molecule-specific Raman photons. All of these are redirected and will be collected by a 

spectrometer for further analysis. From several tests, it was found that 240-320 µm was the 

most suitable depth range as this had an accuracy of 93%. Similar to Li et al. (2019), the 

method has a reading time that could reach up to 45 minutes depending on which part of the 

body was used.  

While Raman spectroscopy shows promise as a method of glucose monitoring, the 

spectrometer itself can be expensive and therefore confined to laboratory settings. Studies 

like Li et al. (2019) and Lundsgaard-Nielsen et al. (2018) also reported long reading times 

of 30 and 45 minutes respectively.  

2.5.6 Capacitance spectroscopy 

Rassel et al. (2023) used capacitance spectroscopy to determine varying glucose 

samples ranging from 5.6 to 33.3 mmol/L. Two copper plates sandwich the sample where 
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one side uses a force-sensitive pressure sensor while the output current was monitored by a 

multimeter. The results from this study had a correlation coefficient of R2 = 0.96. However, 

stability issues related to sweating of the skin, varying body temperatures, humidity, and 

corrosion of the copper plates over time were not addressed. It was also mentioned in the 

report that a decrease in capacitance was observed caused by ionic characteristics (dipole 

orientation and conduction) of the blood.  

Dutta et al. (2019) proposed glucose monitoring using capacitance spectroscopy. A 

capacitive transducer is designed where it uses the tissue of the finger as the dielectric 

material. Like Rassel et al. (2023), it uses two capacitive sensors where one of the capacitors 

act as the sensing capacitor while the other act as a dummy capacitor using air as its 

dielectric. The results were compared with the conventional glucometer with errors of 

±3.5%. The errors are attributed to physiological condition, body temperature and blood 

pressure, similarly as reported by Rassel et al. (2023). The author also reported difficulties 

with variables in the blood.  

In a similar approach using capacitance spectroscopy, Yao et al. (2021) proposed a 

two-electrode wearable continuous blood glucose sensor. The electrode used were made of 

graphene, carbon nanotubes and glucose oxidase (G/CNTs/GOx) for the acting electrode and 

graphene, carbon nanotubes, silver and silver chloride (G/CNTs/Ag/AgCl) as the counter 

electrode. The electrochemical activity of the materials was measured in an aqueous 

electrolyte solution. The cyclic volumetry was done from -0.3 V to 0.9 V at a scan rate of 

0.1 Vs-1. This causes the skin to excrete interstitial fluid through a reverse iontophoresis 

process where the interstitial fluid is used to measure the glucose in the body. The results 
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obtained from the electrodes had a linear correlation coefficient of R2 = 0.9894 which 

matched very well with a conventional glucose meter with high sensitivity.  

Capacitance method on the other hand faced challenges with the variables of the 

blood (such as ionic characteristics which affects the dipole orientation and conduction) as 

a medium as reported by Rassel et al. (2023) and Dutta et al. (2019).  

2.5.7 Near-infrared spectroscopy 

Saleh et al. (2018) designed a method using near-infrared (NIR) spectroscopy for 

glucose monitoring. A sample of water mixed with sugar is placed between two LEDs. A 

1550 nm LED will transmit light while a photodiode with a range from 1700-700 nm will 

read the light. Glucose levels in the sample are correlated with the voltage levels read by 

photodiode. Samples are prepared ranging from 60 mg/dL up to 300 mg/dL with 10 mg/dL 

increments. This experimental setup results in 74% accuracy. This proposed method 

however requires a three-minute reading time to obtain approximately 175 – 185 for each 

sample. The study was also done only in vitro.   

Rachim et al. (2019) established a method of glucose monitoring using visible near-

infrared (Vis-NIR). The study uses an LED with wavelength of 1400-2000 nm for the first 

overtone band and 780-1400 nm for the second overtone band. The reason for using multiple 

LEDs is that different wavelengths can penetrate different layers of the skin, producing 

multiple spectra for analysis. The results of the study achieved a coefficient correlation, R2 

= 0.86. The study, however, was done in an optimum environment and conditions where the 

user is to remain stationary  
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Jain et al. (2019) proposed a NIR spectroscopy together with Huber’s regression 

model to help improve the accuracy of the results. The setup consisted of two wavelengths 

at 940 nm and 1300 nm. The wavelength of 940 nm is used for both absorbance and 

reflectance spectroscopy while 1300 nm is used for only absorbance spectroscopy. For 

absorbance spectroscopy, the finger or earlobe sits between an infrared emitter and an 

infrared detector. As for reflectance spectroscopy, the infrared emitter and detector is one 

device. The correlation coefficient, R2 was improved to 0.9084 after post-processing using 

Huber’s method. The overall accuracy was found to be 94-95% of the predicted blood 

glucose levels. This study also faced stability issues with the variables in blood specifically 

blood pressure. 

Alam et al. (2020) proposed using NIR and a photodiode sensor. The NIR used 

wavelengths from 1700-800 nm. After going through a fingertip, a photodiode of 1550 nm 

wavelength receives the transmitted NIR waves. The waves are converted to electrical 

energy which will run through a microcontroller to determine the glucose value. The results 

show an accuracy of 94.32% from 20 individuals. 

2.5.8 Mid-infrared spectroscopy 

Kasahara et al. (2018) developed a non-invasive glucose monitoring using a mid-

infrared (MIR) absorption spectroscopy and using only three wavelengths from the obtained 

spectroscopy. The proposed method measures the absorbance of oral mucosa, using 

attenuated total reflection prism. Hollow optical fibers act as a transmission line. Two 

Fourier transform infrared spectroscopy (FTIR) are used as MIR spectrometers. An 

attenuated total reflection prism made of zinc sulfide is placed into the patient’s mouth 

between upper and lower lips. The absorbance of oral mucosa is measured by patient’s 
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propagating radiation. Wavelengths in the region from 1200 to 980 cm-1 were obtained at 

every 2 cm-1 to determine the most appropriate wavelengths which were 1050, 1070 and 

1100 cm-1.  

Sim et al. (2018) proposed MIR photoacoustic spectroscopy which ignores skin 

secretions which was a well-known problem for photoacoustic spectroscopy. A high energy 

laser (laser width of 90 μm and repetition rate of 47.5 kHz) illuminates the skin which will 

result in thermal expansion, hence generating an acoustic wave. An image is taken of the 

fingertip during illumination for spectra analysis. Peaks were apparent at 1070, 1105, and 

1140 cm-1.  

A key limitation of infrared spectroscopy for glucose monitoring is the lack of 

standardization in the wavelengths used. Different studies propose varying optimal 

wavelengths based on sample type and device used. This makes it difficult to reproduce and 

compare results.  

2.5.9 Fluorescence spectroscopy 

Jiang et al. (2019) proposed a non-invasive glucose monitoring by fluorescence 

technique. In the study, a signal amplification strategy based on AgNC, GOx and silver 

fluorescence probe is proposed. When the AgNC reacts with H2O2, it is oxidized into Ag+. 

H2O2 on the other hand is a product of glucose that has been oxidized by GOx. Ag+ will 

enhance the red fluorescence in which the fluorescence spectra will be measured by 

fluorescence spectrophotometer. This study, however, was only done in vitro and requires a 

complex fabrication process of the AgNC all while having an incubation time of two hours. 
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Lu et al. (2021) also worked with fluorescence for glucose monitoring. In this study, 

the fluorescence of functionalized CNPs is affected by glucose. When glucose interacts with 

CNPs, it will enhance the fluorescence of the CNPs. Based on the fluorescence spectra 

obtained, wavelength of 420 nm was found to be the most reactive to glucose. The results 

from this experiment came out with a correlation coefficient of R2 = 0.9818. Although 

showing good outcome, this method requires a very long incubation time of five hours.  

Nie et al. (2020) employed fluorescence as a method for glucose monitoring that uses 

palladium-based nanostructures instead of CNPs used by Lu et al. (2021). Similar to other 

studies, the detection is based on the reaction occurring when palladium-based 

nanostructures are in contact with H2O2, turning the solution bluer as the level of H2O2 

increases. Based on the spectra obtained, absorption at wavelength 652 nm is correlated with 

the glucose levels, with correlation coefficient, R2 = 0.9928. Similar to Jiang et al. (2019), 

this proposed method requires an incubation time of two hours.  

Fluorescence uses nanoparticles as reactants, because of this the fabrication is 

laboratory based and complex. The methods reported also require incubation time of two to 

five hours as reported above.   

2.5.10 Electrochemical 

 Sempionatto et al. (2019) introduced eyeglasses that were capable of measuring 

alcohol, vitamin, and glucose levels from tears. The device has four key components; a 

fluidic device to obtain tears, electrochemical flow detector, wireless components and the 

eyeglasses frames itself. To obtain some drop of tears, the device uses a super-hydrophilic 

polycarbonate which can absorb the tears from the eyes without the need for irritation or 

stimulation. The electrochemical sensors are an AOx-modified electrochemical flow 
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detector.  A biocatalytic conversion is done to the sample to produce gluconic acid and 

hydrogen peroxide (H2O2) using GOx found in the tears. The results of the H2O2 are 

selectively reduced by the Prussian Blue transducer.  

Sempionatto et al. (2021) proposed a touch based electrochemical sensor from the 

fingertip for glucose monitoring. The device uses polyvinyl alcohol to absorb sweat from 

the fingertips by capillary pressure. The polyvinyl alcohol sits on top of the Prussian Blue 

transducer where there is an enzymatic layer in contact with the electrochemical biosensor. 

The electrochemical biosensor is used to evaluate the glucose levels in the sweat which 

correlates with glucose levels in blood. The results from this study showed a correlation 

coefficient, R2 higher than 0.95. The method has a slow processing time of two minutes 

where the user has to touch the sensor for one minute then measured for another minute to 

obtain the final results.  

Lin et al. (2022) developed a wearable hydrogel patch based on an electrochemical 

glucose sensor for natural sweat detection. The hydrogel patch acts as a medium to create a 

hydrophilic fluid to withdraw the sweat from the fingertip, back of hand or palm. From here, 

sweat is transferred to the electrochemical sensor via a nanostructure hybrid film. The 

electrochemical sensor consists of Prussian Blue and poly(3,4-ethylenedioxythiophene) 

nanocomposites (PB-PEDOT NC). Sweat obtained contains GOx which generates H2O2 

that correlates with the glucose levels in sweat. The system was tested on three parts of the 

subject which are the fingertips, palm and back of hand. The fingertip, palm and back of the 

hand showed a correlation coefficient of 0.88 0.70 and 0.90 respectively.  

Lipani et al. (2018) and Ribet et al. (2018) developed a glucose monitoring devices 

using interstitial fluid from the skin. Lipani et al. (2018) obtained interstitial fluid by 
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electroosmotic extraction whereas Ribet et al. (2018) used microneedles to probe the human 

skin. Interstitial fluid extracted is used with an electrochemical sensor to determine the 

glucose levels.   

Studies based on electrochemical uses interstitial fluid to determine the glucose 

levels in the body. However, interstitial fluid as a medium can cause problems where the 

variability of the interstitial fluid can affect the accuracy of the results. An example of this 

was reported by Lin et al. (2022) where different parts of the body used had different 

correlation coefficients. A slow processing time could also be an issue for this method as 

reported by Sempionatto et al. (2021).  

2.6 Section summary 

Table 2.4 presents a summary of non-invasive detection methods, sample media, 

sensitivities, and correlation coefficients from previous studies reported in the literature. For 

non-invasive glucose monitoring methods, the studies show correlation coefficients ranging 

from 0.74 to a maximum of 0.99, indicating generally high accuracy across methods. 

Notably, most studies rely on body parts and interstitial fluid as sample media, with only a 

few utilizing urines as a detection medium. 

Table 2.4: Summary of non-invasive detection methods, media of detection, sensitivity 

and correlation coefficients 

Author Method Medium Sensitivity, 

mg/dL 

Correlation 

coefficient 

Pohanka et al. 

(2024) 

Colorimetry Urine 1.98 0.998 

Feng et al. (2023) Colorimetry Urine 0.0002 - 
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Table 2.4: continued 

Firdaus et al. 

(2022) 

Colorimetry Urine 0.00008 0.99 

Hajimiri et al. 

(2023) 

Biosensors Urine 0.103 0.99 

Nguyen et al. 

(2023) 

Biosensors Urine 2.3 NA 

Fenoy et al. (2022) Biosensors Urine 0.0007 0.95 

Cebedio et al. 

(2020) 

Microwaves Finger - 0.91 

Hanna et al. (2022) Microwaves Legs - 0.99 

     

Omer et al. (2020) Microwaves - - - 

Tanaka et al. 

(2020) 

Microwaves - - 0.54-0.80 

Bezuglyi et al. 

(2018) 

Raman Fingers - - 

Zou et al. (2016) Raman Urine - 0.84 

Li et al. (2019) Raman Blood 

vessels in 

nailfold 

- 0.98 

Lundsgaard-

Nielsen et al. 

(2018) 

Raman Thumb - 0.93 

Rassel et al. (2023) Capacitance - - 0.96 

Dutta et al. (2019) Capacitance Finger - - 
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Table 2.4: continued 

Yao et al. (2021) Capacitance Interstitial 

fluid 

- 0.99 

Sim et al. (2018) MIR Skin - - 

Sempionatto et al. 

(2019) 

Electrochemical Tears - - 

Sempionatto et al. 

(2021) 

Electrochemical Sweat - 0.95 

Lipani et al. (2018) Electrochemical Interstitial 

fluid 

- - 

Ribet et al. (2018) Electrochemical skin - - 

Lin et al. (2022) Electrochemical Sweat - 0.90 

Karpova et al. 

(2019) 

Electrochemical Sweat - - 

Jiang et al. (2019) Fluorescence - - - 

Lu et al. (2021) Fluorescence - - 0.98 

Nie et al. (2020) Fluorescence - - 0.99 

 

2.7 Research gap 

There are a number of studies exploring semi-invasive and non-invasive glucose 

monitoring through various methods, including spectroscopy (Raman, NIR, MIR, 

capacitance and fluorescence), microwave and electrochemical, as listed in Table 2.4. 

However, these studies primarily focus on interstitial measurements and specific body parts 

rather than urine, and few integrate smartphone technology. While urinalysis using 

colorimetry and biosensors have been investigated for glucose detection, these approaches 
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often require laboratory-based setups and lack real-time, user-friendly integration. Research 

combining smartphone technology with laser-based refractometry for detecting glucose in 

urine remains limited, despite its potential to provide a portable, affordable, and user-friendly 

solution for non-invasive glucose monitoring.
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CHAPTER 3  
 

 

METHODOLOGY 

3.1 Overview 

In this section, the methodology in the setup to determine the glucose levels of 

patients accurately and consistently is discussed. Figure 3.1 shows the flowchart for the 

development of the smartphone-based laser refractometer and the appropriate assessments. 

Because the refractive index of urine is correlated to the glucose levels of the patient, theory 

establishment was to measure the effects of the varying refractive of urine in this case using 

the laser. This will ensure a pain free process of measuring the glucose levels when using 

urine. Preliminary tests are done with prepared glucose samples to determine the validity of 

the theory before advancing with actual urine samples. With success in preliminary tests, 

further assessments of the proposed method are made. Since this experiment uses urine, 

factors such as water level, colour variation and turbidity are considered to ensure 

consistency and accuracy of the proposed method. Finally, comparisons can be done with 

fasting glucose levels of urine samples to study the efficacy of the smartphone-based laser 

refractometer.  
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Figure 3.1: Flowchart of smartphone-based laser refractometer development 

 

3.2 Theory 

In this study the glucose concentration in urine will be determined as a function of 

the refractive index in the urine samples. With the increase of glucose concentrations in 

urine, the refractive index will also increase (Kavitha et al. (2006; Tamrin et al. (2018). As 

illustrated in Figure 3.2, a circular laser beam passing diametrically through an acrylic rod 

will be subjected to a total internal reflection. This causes the beam to be shaped in the form 

of elliptical beam. The size of the elliptical beam does vary with the diameter of the rod. 

Throughout the experiment the size of the rod remains the same. At the air-urine interface, 

the size of the elliptical beam (as a function of minor and major axes) will be varied 

depending on the refractive index of the sample.  
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𝑛𝑎𝑖𝑟

𝑛𝑢𝑟𝑖𝑛𝑒
=

sin 𝜃𝑟

sin 𝜃𝑖
 Equation 3.1 

Where 𝑛𝑎𝑖𝑟 is refractive index of air, 𝑛𝑢𝑟𝑖𝑛𝑒 is refractive index of urine, 𝜃𝑖 is angle 

of incident and 𝜃𝑟 is angle of refraction. Assuming that 𝑛𝑎𝑖𝑟 and 𝜃𝑖 are constants,  𝜃𝑟 is 

inversely proportional to 𝑛𝑢𝑟𝑖𝑛𝑒. Hence, the length of refracted laser line is also inversely 

proportional to 𝑛𝑢𝑟𝑖𝑛𝑒. 

Assuming Sample B (Figure 3.2 (b)) has a higher refractive index than that of Sample 

A (Figure 3.2 (a)), the length (major axis) of the refracted elliptical beam in Sample B would 

be shorter than that of Sample A. On the other hand, the length (minor axis) is comparatively 

larger for Sample A. On this basis, the concentration of glucose in urine will be correlated 

with the refracted elliptical beam on major axis since the changes with respect to varying 

refractive indices is more pronounced than the latter.  
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Figure 3.2: Front view of (a) Sample A with lower glucose concentration, (b) Sample B 

with higher glucose concentration. Side view of (c) Sample A with lower glucose 

concentration, (d) Sample B with higher glucose concentration. (e) Detailed front view of 

Sample B with higher glucose concentration. Images drawn not to scale 
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3.3 Experimental setup  

The design of the smartphone-based laser refractometer as seen in Figure 3.3(a) and 

Figure 3.3(b) was done in AutoCAD. During the design phase, important factors were taken 

into account to ensure accurate and reliable results. It is important that the setup is robust 

because the whole concept depends on the stability of the parameters such as positioning of 

the smartphone lens, height between the smartphone lens and the subject, and the angle of 

the laser.  The desired design was 3D printed (refer Figure 3.3(c)) using a 3D printer (Creality 

Ender V3). The material used was polylactic acid (PLA) and the printing was done with 20% 

infill. 20% was enough so that the printed product is solid and strong enough to withstand 

the weight of the smartphone on top of the setup without any vibration or instability.  

The proposed design uses a smartphone, as for the current setup Apple iPhone 13 is 

used. However other phones can be used but with different prints of the top plate of the 

design to cater other phones. Additionally, the default camera app is not used because this 

did not allow full control of all the features of the camera such as the focus, ISO and shutter 

speed. Hence, an app called ‘mcamera’ is used to allow manual changing of these settings. 

To ensure accuracy and consistency, the settings of the camera must be consistent for every 

measurement. In all experiments, the focus was kept to 0.01 while the ISO was kept at 7.6K 

and the shutter speed to 1/16. This resulted in the best quality of the sample images.  

The laser pointer is a crucial component of this setup to ensure consistency and 

accuracy. The laser pointer used was a rechargeable 5 mW laser pointer with wavelength of 

650 nm, a beam spot size of 3 mm at standoff distance of 7 cm which was sufficient to cater 

for the measured length. To ensure consistency of the brightness of the laser, it was ensured 

that it was fully charged before measurements were made.  
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Figure 3.3: Smartphone-based laser refractometer design (a) in isometric and, (b) side 

view in AutoCAD. (c) 3D printed smartphone-based laser refractometer 

Data for analysis is acquired from images captured using the smartphone-based laser 

refractometer (see Figure 3.4). As previously mentioned, the setup uses an iPhone 13 

alongside a third-party app (mcamera) to ensure consistency of images taken. Images are 

60mm 

40mm 
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transferred to a laptop where the measurements of the laser line are done using paint (in 

pixels). 

 

Figure 3.4: Top view of measured laser line using prototype (a) with ambient lighting 

(b) controlled lighting 

3.4 Materials and Samples 

This study involved secondary analysis of data collected by a collaborating 

laboratory, Advanced Pathology (M) Sdn. Bhd. (APSB) and Puncak Borneo Prison (PBP) 

obtained informed consent from all individual participants included in the study prior to data 

collection. All methods were carried out in accordance with relevant guidelines and 

(a) 

(b) 

Measured laser line 
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regulations. Ethical approval for the use of this data was obtained from Mesyuarat 

Jawatankuasa Etika Perubatan Fakulti Perubatan dan Sains Kesihatan no. 04/2018 on 11th 

December 2018. 

There were 123 and 37 actual urine samples provided by Advanced Pathology (M) 

Sdn. Bhd. (APSB) and Puncak Borneo Prison (PBP), respectively. From APSB, urine 

samples, urinalysis and blood report were supplied. From PBP, they supply urine samples 

and glucometer reading. Samples from 37 patients at PBP were collected in the morning on 

the same day and their respective glucose levels were measured using a conventional 

glucometer (Contour Plus Elite by Contour Plus) to provide fasting glucose levels. Of the 

123 samples from APSB, 56 fasting, 15 HbA1c and 52 both fasting and HbA1c samples 

were obtained. 

Substances in the urine such as bilirubin, ketones and proteinuria can also alter the 

physical properties of the urine including the refractive index. To simply explain, bilirubin 

is a product of hemoglobin (red blood cells), ketones are from fats, proteinuria are from 

protein. All three of these can affect the refractive index of urine. However, urinalysis 

(dipstick) reports only a handful of urine samples with these substances present. Thus, 

samples with these substances present are disregarded.   

The sample size for quantitative studies can be calculated using the following 

equation (Sadiq et al. (2024); 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑁 =  
(𝑍)2(𝑆𝑡𝑑 𝐷𝑒𝑣)2

(𝑞)2
 Equation 3.2 

Where Z is the critical value and a standard corresponding value of confidence, and 

q is the margin of error. For a 95% confidence level, which is the common used confidence 



35 

level, the critical value would be 1.96 (Sadiq et al. (2024). As for the standard deviation of 

this study it is 5.86 and the targeted margin of error is 1 mmol/L (18 mg/dL). Hence, the 

number of samples for this study can be calculated as follows; 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑁 =
(1.96)2(5.86)2

(1)2
= 132 

Hence, the minimum number of samples required for this study is 132 samples. 

3.4.1 Glucose sample preparation 

Initially for the first preliminary experiment, a set of glucose solutions were prepared 

using water and glucose powder (Glucolin) ranging from 70 to 300 mg/dL (3.9 – 16.7 

mmol/L) with increments of 10 mg/dL as seen in Table 3.1. Glucolin is a commercial brand 

energy drink made from dextrose monohydrate, a medicinal glucose which is used as a 

source of energy for the body. The solution was prepared by mixing 100 mℓ of water is 

added with 0.07 g (digital weighing scale with sensitivity of ±0.01 g) of glucose powder to 

obtain 70 mg/dL of glucose concentration. Then the steps are repeated to obtain up to 300 

mg/dL glucose concentrations with increments of 10 mg/dL. It is also important to note that 

multiple pictures of the same sample are taken. This is to obtain the average length of the 

laser line. These are repeated for all readings. 

Table 3.1: Samples prepared for preliminary testing using water and glucose powder 

with varying weights for varying glucose concentrations 

Sample Glucose powder (g) Concentration (mg/dL) 

1 0.07 70 

2 0.08 80 

3 0.09 90 
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Table 3.1: continued 

4 0.10 100 

5 0.11 110 

6 0.12 120 

7 0.13 130 

8 0.14 140 

9 0.15 150 

10 0.16 160 

11 0.17 170 

12 0.18 180 

13 0.19 190 

14 0.20 200 

15 0.21 210 

16 0.22 220 

17 0.23 230 

18 0.24 240 

19 0.25 250 

20 0.26 260 

21 0.27 270 

22 0.28 280 

23 0.29 290 

24 0.30 300 

23 0.29 290 

24 0.30 300 
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3.4.2 Actual urine  

As for urinalysis, “H-500 Urine Analyzer” by DIRUI is used. This machine uses a 

test strip with multiple reagent pads which will react with different substances in the urine. 

The change in colour of the reagent pads is determined by optical sensors which correlate 

with different parameters such as glucose, protein, pH value, specific gravity, and more.  

3.4.3 Blood report  

Figure 3.5 shows an example of a blood report provided by APSB. The lab sends 

their samples to a lab in Kuala Lumpur which uses a “Blood Biochemistry Analyzer” by 

Roche to analyze the blood samples. The machine mixes blood samples with reactive 

reagents for several detection methods. The methods used are photometric, turbidimetric and 

electrochemical detection. The machine is capable of determining multiple parameters such 

as bilirubin, creatinine, cholesterol, protein and glucose levels. This includes both fasting 

and HbA1c glucose levels as shown in Figure 3.5. 
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Figure 3.5: Blood report of patient 

3.5 Assessing the effects of urine variation on measurement 

3.5.1 Different sample volumes 

Since the experimental setup uses urine from patients, the volume of the urine was a 

concern for the setup. Since the volume of urine varies from different people, it was decided 

that volumetric assessment was necessary. As seen in Table 3.2, different volumes of 

samples (10 to 50 mℓ) were used to determine if this influenced the results. The samples 

were also done with increasing glucose levels for each volume to determine if the difference 

in volume would affect the consistency of the results. Assuming that it would not have any 

effects, the resulting length of the laser line would stay consistent for each volume. 
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Table 3.2: Varying glucose concentration and varying volumes used for effects of 

volume on performance of smartphone-based laser refractometer 

Volume 

(mℓ) 

Concentration of prepared glucose 

solution 

 100 (mg/dℓ) 200 (mg/dℓ) 300 (mg/dℓ) 

10    

20    

30    

40    

50    

Average    

Std dev    

 

3.5.2 Different sample turbidity 

Another factor that drew attention was the variation in colour and turbidity among 

different urine samples. Therefore, this test was necessary to determine if the colour and 

clarity of the samples affect the accuracy of the results. Since the proposed method relies on 

the refractive index, colour will not affect the results. In contrast, turbidity could influence 

the measurements. Unlike colorimetry, where colour can significantly impact the results, 

turbidity does not pose the same challenge in refractive index-based methods. Therefore, it 

is crucial to evaluate the impact of turbidity on the proposed device, rather than focusing on 

the effect of colour.  

In this test, food grade coffee powder was used to vary the turbidity of the samples. 

Coffee powder was used to provide a cost effective and better reproductivity of the different 
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turbidity levels to better understand the effects of different turbidity to the proposed device. 

Samples are prepared using 2 ℓ of water and 0.25 g increments of coffee powder as seen in 

Table 3.3. Then the samples undergo a nephelometer to determine the NTU. This will 

determine up to which NTU level the proposed prototype would still be able to measure the 

glucose levels. The NTU of the coffee samples were measured using a calibrated 

nephelometer (Hach DR900). 

After the turbidity of the samples are determined, the samples are used with the 

smartphone-based laser refractometer to determine up to which NTU the proposed prototype 

can still perform well. The glucose concentration is kept as a controlled variable in this 

section at 0 mg/dL.  

Table 3.3: Varying coffee powder weight used for measurement of turbidity, NTU 

Coffee powder (g) Nephelometric turbidity unit (NTU) 

0.00 0 

0.25 26 

0.50 57 

0.75 75 

1.00 106 

1.25 131 

1.50 148 

1.75 179 

2.00 190 

2.25 228 
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3.5.3 Shelf-life 

To ensure that the shelf-life of the samples would not affect the results, this 

assessment determine the outcome if the samples were read at different times. Samples are 

used with the proposed refractometer on the day of acquisition, after 1 day and after 2 days 

(Firdaus et al. (2022). Oxidization of the urine samples can be decelerated by keeping the 

samples around 4°C, using airtight containers and adding chemical preservatives. Chemical 

and bacteria activities are reduced drastically at 4°C. Samples are kept in airtight screw 

containers in refrigerators (1.7°C to 3.3°C). Storing them at a freezing point is not advisable 

as this would alter the chemical composition of the urine samples. Oxidization is to be 

avoided because it can affect the chemical, biological and physical (including refractive 

index) properties of the urine (Gharsallah et al. (2018). Samples from APSB are acquired on 

a weekly basis to avoid oxidized urine. The samples are also kept in airtight screw containers 

in refrigerators. For this reason, by keeping the samples in the above parameters, 

measurements will be taken 4 hours, 1 day and 2 days after acquisition.  

3.5.4 Sensitivity, specificity, positive predictive values (PPV) and negative predictive 

values (NPV) 

Table 3.4 demonstrates how to determine true positive (TP), false positive (FP), false 

negative (FN) and true negative (TN). True positive and true negative dictates that the 

prototype successfully determined that the patient does or does not have the disease. 

Whereas false positive and false negative dictates that the prototype failed to determine 

whether the patient does or does not have the disease.  

 

 



42 

Table 3.4: Test results of using smartphone-based laser refractometer to determine true 

positive, true negative, false positive and false negative 

Test results Diabetes 

Has disease No disease 

+ True positive False positive 

- False negative True negative 

 

According to Monaghan et al. (2021) sensitivity indicates how well an instrument 

dictates whether the subjects are truly positive. As for specificity, this indicates how well an 

instrument dictates whether the subjects are truly negative. PPV on the other hand 

determines the probability of a subject is positive when tested positive and vice versa for 

NPV. 

To calculate the sensitivity, specificity, PPV and NPV of the instrument, the 

following equations are used (Monaghan et al. (2021); 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% Equation 3.5 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
× 100% Equation 3.6 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% Equation 3.7 
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𝑁𝑃𝑉 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑁
× 100% Equation 3.8 

In this study, glucose levels that are 130 mg/dL and above will be defined as positive 

results. 
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CHAPTER 4  
 

 

RESULTS AND DISCUSSION 

4.1 Overview 

In this section, results of the preliminary test using the smartphone-based laser 

refractometer are showcased using samples prepared with glucose powder. Further 

assessments are done using the smartphone-based laser refractometer with respect to 

volumetric, turbidity and shelf-life assessments. For volumetric assessment, tests are 

conducted using different volumes of samples with concentrations as a controlled variable. 

Similarly for turbidity assessment the concentrations are a controlled variable while different 

turbidites are used to study the performance of the proposed method. As for shelf-life 

assessment, the smartphone-based laser refractometer was used on the same samples for in 

a span of three days to study the effects over time. Finally, actual urine samples are used to 

study the efficacy of the proposed method by comparing the results of the proposed method 

and the respective fasting glucose levels of the urine samples.  

4.2 Preliminary tests 

As mentioned in the previous chapter, preliminary tests are done using glucose 

samples prepared by adding glucose powder (Glucolin) with water. Samples used ranged 

from 70 to 300 mg/dL. The results proved the relationship between the glucose concentration 

and the length of the laser line to be inversely proportional to each other. Referring to Figure 

4.1, the correlation coefficient of the proposed method and the glucose samples were R2 = 

0.8871 with a limit of detection of 1.4236 mg/dL. Measurements of the refractive index of 

the glucose samples are done by measuring a refracted laser line in the prepared glucose 

samples. The average angle is done with three images acquired for each glucose 
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concentration. This proved that the higher the concentration of glucose, the higher the 

refractive index of the sample (refer Figure 4.2).  
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Figure 4.1: Smartphone-based laser refractometer glucose concentration (mg/dL) vs 

glucose concentration (mg/dL) 

 

Figure 4.2: Glucose concentration (mg/dL) vs refractive index, n 

4.3 Assessing the effects of urine variation on measurement 

The prototype was assessed with respect to varying volume, varying turbidity and 

shelf-life of the urine samples. The assessment of varying volume would determine the 

effects of varying depth of the sample. Whereas the assessment of varying turbidity would 

y = 1x - 0.0751

R² = 0.8871

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

G
lu

co
se

 c
o

n
ce

n
tr

at
io

n
 (

m
g
/d

L
)

Smartphone-based laser refractometer (mg/dL)

Smartphone-based laser refractometer glucose 

concentration (mg/dL) vs glucose concentration 

(mg/dL)

R² = 0.9376

1.0450

1.0500

1.0550

1.0600

1.0650

1.0700

1.0750

1.0800

1.0850

1.0900

1.0950

0 50 100 150 200 250 300 350

R
ef

ra
ct

iv
e 

in
d

ex
, 

n

Glucose concentration (mg/dL)

Refractive index, n vs glucose concentration 

(mg/dL)



47 

determine the limitation of the prototype in terms of turbidity. As for the assessment of shelf-

life study the conditions of the urine samples especially in turbidity up to three days.  

4.3.1 Effects of varying volume on measurement  

Volumetric assessment was done by varying volumes with the same glucose 

concentration in order to understand the effects of varying depth of the sample. Based on 

Table 4.1 varying volumes of samples does not affect the outcome of the results. The change 

in depth of the sample affect only the planar position of the laser in the beaker as observed 

in Figure 4.3. 

Table 4.1: Results of varying volume and varying glucose levels 

Volume 

(mℓ) 

Concentration of prepared glucose 

solution 

 100 (mg/dℓ) 200 (mg/dℓ) 300 (mg/dℓ) 

10 804 pixels  740 pixels 678 pixels 

20 806 pixels 743 pixels 680 pixels 

30 805 pixels 739 pixels 680 pixels 

40 803 pixels 738 pixels 677 pixels 

50 806 pixels 737 pixels 678 pixels 

Average 804.8 pixels 739.4 pixels 678.6 pixels 

Std dev 1.303 2.302 1.341 
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Figure 4.3: Planar position of measured laser line in (a) 10 mℓ of 100 mg/dL, (b) 30 mℓ 

of 100 mg/dL, and (c) 50 mℓ of 100 mg/dL glucose solutions 

  

Based on Figure 4.4, by using trigonometry, it can be written that 

𝜃𝑟 = 𝑡𝑎𝑛−1 (
𝐾𝑟

ℎ
) Equation 4.1 

Where 𝐾𝑟the position of is refracted laser line on the base of the container and ℎ is 

the liquid depth of the sample from the base of the container. 

By rearranging Equations 3.1 (
𝑛𝑎𝑖𝑟

𝑛𝑢𝑟𝑖𝑛𝑒
=

sin 𝜃𝑟

sin 𝜃𝑖
) and 4.1, any variation of liquid depth 

would only affect the planar position of the refracted laser on the base of the container as 

given in Equation 4.2. In other words, 𝐾𝑟 is directly proportional to ℎ. 

𝑛𝑢𝑟𝑖𝑛𝑒 =
sin 𝜃𝑖

sin [tan−1 (
𝐾𝑟

ℎ
)]

  Equation 4.2 

 

 

(a)  (b) (c) 

10 mℓ of 100 mg/dL 30 mℓ of 100 mg/dL 50 mℓ of 100 mg/dL 

Perpendicular 

to normal 

𝐾1 𝐾2 𝐾3 
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Figure 4.4: Detailed side view of sample with higher glucose concentration 

4.3.2 Effects of varying turbidity on measurement 

Human urine can come in different turbidity and colour as observed in Figure 4.5. 

Turbidity in urine can be caused by numerous factors such as bacteria, pus, blood, crystals, 

protein and more (Simerville et al. (2005)). The next test determines how different turbidity 

would affect the results of the proposed prototype. The samples in this test were done as 

mentioned in the previous chapter using food grade coffee powder mixed with water.  
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Figure 4.5: Image of sample with turbidity of (a) 0 NTU, (b) 57 NTU, and (c) 106 NTU 

Table 4.2: Results of Nephelometer and corresponding smartphone-based laser 

refractometer results 

Sample Mass (g) Nephelometric 

turbidity unit 

(NTU) 

Image 

1 

(pixels) 

Image 

2 

(pixels) 

Image 

3 

(pixels) 

Average 

(pixels) 

1 0.00 0 825 828 827 826.67 

2 0.25 26 821 822 823 822.00 

3 0.50 57 816 814 814 814.67 

4 0.75 75 - - - - 

5 1.00 106 - - - - 

6 1.25 131 - - - - 

7 1.50 148 - - - - 

8 1.75 179 - - - - 

9 2.00 190 - - - - 

10 2.25 228 - - - - 

(a) (b) (c) 

2cm 
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From Table 4.2 it can be confirmed that there is a limit on how high turbidity can be 

for the proposed prototype, hence showcasing a weakness. For fabricated and actual samples, 

the NTU levels of the samples have to be about 57 NTU and under. The average NTU levels 

of human urine is 30 NTU (Sintawardani et al. (2023). It is also worth mentioning that the 

NTU levels of urine can be reduced by undergoing the urine samples in a centrifuge. 

Alternatively, leaving the urine sample to rest for 30 minutes to 1 hour will eventually let 

the sediments settle down to the bottom of its container hence leaving clear urine on top. 

This was further proven using MATLAB to determine the intensity of the measured laser 

lengths as in Figure 4.6. This showed that the intensity profile deteriorated when the sample 

was at 75 NTU further proving that the limit of the proposed design is 57 NTU. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.6: Intensity profile comparisons of 0 NTU with (a) 26 NTU, (b) 57 NTU, (c) 

75 NTU, and (d) 106 NTU 

4.3.3 Effects of shelf-life on measurement 

To ensure that the shelf-life of the samples does not affect the results, this test 

determine the outcome if the samples were read at different times. Samples are used with 

the proposed prototype on the day of acquisition, after 1 day and after 2 days. Three images 

of the samples are taken to obtain the mean reading. The results in Table 4.3 showed that the 

standard deviation from three days ranged from 0.19 – 6.30 indicating an acceptable level of 

variability considering the simplicity of the proposed method especially if the proposed 

method is for routine use rather than clinical use. The samples are refrigerated and kept in 

airtight screw containers to avoid the occurrence of oxidization. Oxidization of urine can 

affect its chemical, biological, physiological and physical characteristics through either urea 
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decomposition, creatinine alteration, protein breakdown or colorimetric changes (Gharsallah 

et al. (2018). For example, creatinine alteration will change the concentration of the urine 

samples and thus affect the refractive index (Gharsallah et al. (2018). 

Table 4.3: Smartphone-based laser refractometer results after 5 hours, 1 day and 2 days 

of sample acquired on 2nd and 23rd August 2024 

Sample 

No. 

mg/dL Smartphone-based laser refractometer 

(pixels) 

Smartphone-

based laser 

refractometer 

(mg/dL) 

After 5 

hours 

After 

1 day 

After 2 

days 

Mean Std 

dev 

 

c17 81 867.00 867.33 867.00 867.11 0.19 76.87 

c3 84.6 868.33 866.00 868.33 867.56 1.35 70.47 

c9 84.6 863.33 865.33 865.33 864.67 1.15 94.47 

c1 86.4 862.67 863.33 865.00 863.67 1.20 97.67 

c4 86.4 862.67 863.33 862.67 862.89 0.38 97.67 

b11 100.8 867.00 866.33 867.67 867.00 0.67 76.87 

b5 113.4 865.00 866.67 865.67 865.78 0.84 86.47 

c10 117 860.67 860.67 861.00 860.78 0.19 107.27 

c12 118.8 860.00 860.33 860.33 860.22 0.19 110.47 

b1 120.6 845.00 842.67 847.67 845.11 2.50 182.47 

b9 122.4 851.33 850.67 851.67 851.22 0.51 152.07 

b4 126 848.33 849.33 848.00 848.56 0.69 166.47 

b2 133.2 848.33 849.33 848.00 848.56 0.69 166.47 

c18 135 850.33 850.33 845.00 848.56 3.08 156.87 
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Table 4.3: Continued 

c5 142.2 843.33 842.00 847.67 844.33 2.96 190.47 

c21 142.2 842.00 841.67 843.00 842.22 0.69 196.87 

c7 156.6 842.33 839.67 843.67 841.89 2.04 195.27 

b7 176.4 846.67 847.67 845.67 846.67 1.00 174.47 

c16 180 850.67 838.67 841.33 843.56 6.30 155.27 

c19 180 837.33 836.00 839.33 837.56 1.68 219.27 

b10 205.2 838.67 839.67 840.00 839.44 0.69 212.87 

b16 234 833.33 832.67 835.00 833.67 1.20 238.47 

b14 279 833.00 833.67 830.67 832.44 1.58 240.07 

c14 286.2 831.67 831.67 832.67 832.00 0.58 246.47 

c8 349.2 824.67 825.67 827.00 825.78 1.17 280.07 

b8 487.8 818.33 819.00 818.67 818.67 0.33 310.46 

 

4.4 Actual urine  

Once the smartphone-based laser refractometer was tested and calibrated, then the 

actual urine was tested. Urine samples collected are provided with blood analysis and 

urinalysis results. Results of the actual urine using the smartphone-based laser refractometer 

are compared with the fasting glucose levels from the blood report but not the urinalysis 

results. This is because urinalysis results are in a range instead of an integer value which 

makes it difficult for comparison. 
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4.4.1 Comparison with fasting glucose levels 

The first comparison is with a total of 93 fasting glucose levels from the APSB and 

PBP. Only 93 of the 160 samples were viable for the proposed method because the remaining 

67 were cloudy therefore not viable with the proposed method. The raw data shows 

promising results of the proposed method having the highest standard deviation of 5.86. By 

referring to Figure 4.7, the results from this comparison had a correlation coefficient, R2 = 

0.8881 with a sensitivity of 4.8 mg/dL.   

It is important to note that bilirubin (byproduct of hemoglobin), ketones (byproduct 

of fat) and proteinuria (protein) are present in liquid form in urine samples Çelik et al. (2024); 

Pape et al. (2020), and Ridley (2018). These substances can influence the refractive index of 

urine, potentially affecting measurement accuracy Bökenkamp (2020); Kumar et al. (2018), 

and Portincasa et al. (2023). In some cases, bilirubin may exist in the form of crystals which 

may affect turbidity. In this study, 11 samples reported proteinuria, three reported ketones 

and none reported bilirubin presence. Of the 11 samples that reported proteinuria presence, 

only two samples were cloudy (sample no. 4558 and 4671). Of the three samples that 

reported ketones presence, two samples were cloudy (sample no. 4628 and 4840f). Due to 

the relatively high turbidity, these four samples were unusable and therefore omitted. Of the 

many samples collected, there was one sample (sample no. 4844) being omitted as well due 

to the considerably high presence of protein and ketone. 

From the total of 160 samples collected, 67 samples were found to be slightly cloudy 

or cloudy since the NTU level is approximately more than the detectability of proposed 

prototype. Cloudy urine may be caused by the presence of pus, bacteria, blood, crystals, 

protein and more (Simerville et al. (2005). However, 18 samples were slightly cloudy (less 
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than 57 NTU) and were still viable to be used with the proposed refractometer as proven in 

turbidity assessment section. This proved a weakness because samples must be clear/slightly 

cloudy with the absence of bilirubin, protein and/or ketones for the best results. This can be 

addressed using advanced digital image processing algorithms which will be the subject of 

our future study.  

Figure 4.7 shows the results of the smartphone-based laser refractometer and fasting 

glucose concentration obtained from the samples. The graph shows a correlation coefficient 

of 0.89 suggesting the potential of the proposed device as a viable alternative for glucose 

monitoring. It can also be observed that outliers are present in the results. However, it can 

be alleged that because these samples are from PBP which uses a conventional glucometer, 

the levels of ketones, proteins and bilirubin are unattainable which could affect the results 

as discussed above. 
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Figure 4.7: Smartphone-based laser refractometer (mg/dL) vs fasting glucose 

concentrations (mg/dL) 

 

Table 4.4 and figure 4.8 compares the smartphone-based laser refractometer with 

previous research on colorimetry. For colorimetry of test strips in Pohanka et al. (2024), R2 

of 0.998 and sensitivity of 1.98 mg/dL was obtained. While works in colorimetry of AuNPs 

such as Feng et al. (2023)  and Firdaus et al. (2022) resulted in R2 of 0.876 and 0.998 and 

sensitivity of  0.0002 and 0.00008 mg/dL, respectively. Although the present method 

demonstrates a higher limit of detection and a lower correlation coefficient compared to 

other proposed methods, it offers notable advantages in terms of simplicity, cost-

effectiveness, and user-friendliness. In contrast to other urinalysis methods that often require 

y = 1.0139x - 38.146

R² = 0.8881

0

50

100

150

200

250

300

350

400

450

500

550

0 50 100 150 200 250 300 350

F
as

ti
n
g
 g

lu
co

se
 c

o
n
ce

n
tr

at
io

n
 (

m
g
/d

L
)

Smartphone-based laser refractometer glucose concentration(mg/dL)

Smartphone based laser refractometer (mg/dL) vs 

fasting glucose concentration (mg/dL) 

Sample c8 

from PBP 

Sample b8 

from PBP 



58 

expensive instrumentation and complex procedures, the proposed approach utilizes a more 

accessible and straightforward setup. As a result, it holds greater potential for real-world 

implementation, particularly in resource-limited settings or for point-of-care applications. 

Table 4.4: Comparison of previous urinalysis methods for glucose sensing 

Method of urinalysis Limit of 

detection 

(mg/dL) 

Correlation 

Coefficient, 

R2 

Ref. 

Colorimetry of test 

strips 

1.98 0.998 Pohanka et al. (2024) 

Colorimetry of AuNPs 0.0002 NA Feng et al. (2023) 

Colorimetry of AuNPs 0.00008 0.99 Firdaus et al. (2022) 

Biosensors (GOx) 0.103 0.99 Hajimiri et al. (2023) 

Biosensors (ZnS) 2.3 NA Nguyen et al. (2023) 

Biosensors (GOx) 0.0007 0.95 Fenoy et al. (2022) 

Smartphone-based 

laser refractometer 

4.8 0.89 Present work 

 

 

4.5 Sensitivity, specificity, positive predictive values and negative predictive values 

Based on table 4.5, the proposed prototype has a sensitivity of 1 and NPV of 0. 

Whereas the specificity and PPV are 0.61 and 0.76 respectively. This means that the 

prototype performs well to determine when a patient has the disease with zero false negative 

results. However, false positive results are relatively high showing weakness of the prototype 

for negative patients. More samples can be acquired to further improve or investigate the 

specificity and PPV of the proposed prototype. By acquiring more samples, the impact of 
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random variation is minimized, leading to more accurate and reliable estimates of the 

research’s performance. The increase in precision enhances the likelihood of correctly 

identifying true positive and true negative cases, thereby strengthening the validity of the 

sensitivity, specificity, PPV and NPV. 

 

Table 4.5: True positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) results from smartphone-based laser refractometer 

Prototype 

Results 

Disease 

Has disease No disease 

+ TP (52) FP (16) 

- FN (0) TN (25) 
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CHAPTER 5  
 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The following conclusions can be derived from this study; 

i. A non-contact smartphone-based laser refractometer for glucose monitoring was 

successfully developed. The refractive indices of the urine, based on the refracted 

length of the laser line, were correlated with fasting blood glucose concentrations. 

The proposed prototype uses a smartphone to capture a relatively high resolution 

images of a laser line caused by total internal reflection through the rod and refraction 

caused by the urine (Objective 1). 

ii. With the developed prototype, assessment was done in three parts: volumetric, 

turbidity and shelf-life assessments. For volumetric, assessment was done with a 

constant glucose concentration but varying volume levels. The results from this 

section gave a consistent pixel count for each concentration which proved that 

volume is not a crucial factor in measuring glucose levels using the smartphone-

based laser refractometer. This is because the volume of the samples would only 

affect the planar position of the laser line in the images. As for turbidity, the 

assessment was done with prepared samples with varying levels of turbidity (NTU). 

For this assessment, it was done to test the limits of the smartphone-based laser 

refractometer in terms of turbidity which was found to be 57 NTU which is higher 

than the average turbidity of human urine as reported in the literature. Assessment 

based on shelf-life was also done where the samples were still viable after three days 
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of collection. It is reported that there is little to no change in the readings with a 

standard deviation ranging from 0.19 to 6.30 (Objective 2). 

iii. Once assessed, the smartphone-based laser refractometer was used with actual urine 

samples. For this, urine samples were collected from APSB and PBP on a weekly 

basis for assessment using the proposed prototype. Urine samples collected come 

with a blood report (fasting) and urinalysis report for comparison of results using the 

prototype. For fasting (blood report) glucose levels, the achieved correlation 

coefficient, R2 = 0.89 with a limit of detection of 4.8 mg/dL (Objective 3).  

5.2 Recommendations 

i. The application of neural networks and machine learning algorithms to precisely 

determine the length of the refracted laser line in the presence of high turbidity in 

urine samples will overcome the limitations of the current study, which relies on 

manual interpretation. 

ii. Development and integration of smartphone applications to further improve 

usability, especially for telemedicine purposes. 
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APPENDICES 

Appendix A – Experimental results of preliminary tests using prepared glucose samples 

 

Figure A: Smartphone-based laser refractometer (pixels) vs glucose concentration (mg/dL) 

Table A: Results of preliminary tests using prepared glucose samples 

Glucose 

concentration 

(mg/dL) 

Pixel 

count 

Smartphone-based laser 

refractometer (mg/dL) 

70 848 50.816 

80 845 51.987 

90 812 72.596 

100 809 75.171 

110 795 88.737 

120 779 107.361 

130 760 133.800 

140 750 149.600 

y = -1.4236x + 1248.5

R² = 0.8871
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150 739 168.481 

160 751 147.961 

170 745 157.987 

180 733 179.443 

190 750 149.600 

200 741 164.931 

210 730 185.100 

220 726 192.824 

230 722 200.756 

240 713 219.363 

250 696 257.384 

260 701 245.811 

270 720 204.800 

280 688 276.576 

290 695 259.737 

300 680 296.600 

 

From the equation in Figure A, the equation is used to determine the mg/dL value using the 

pixels obtained. In this case, 𝑥 = (0.0065)(𝑝𝑖𝑥𝑒𝑙𝑠2) − (11.395)(𝑝𝑖𝑥𝑒𝑙𝑠) + 5039.6 

Appendix B – Experimental results of actual urine compared with fasting glucose levels 

Table B: Results of fasting glucose levels (mg/dL) from APSB and PBP with the 

corresponding measurements using smartphone-based laser refractometer (pixels) 

From 
Samp

le no. 

Fasting 

(mg/dL) 
pH Turbidity Debris Protein Ketones Bilirubin 

Image 

1 

Image 

2 

Image 

3 
Average 

Std 

dev. 

APSB 4440 99 6.5 clear no neg neg neg 860 866 863 863.00 3.00 

APSB 
4442 93.6 5 clear no neg neg neg 867 867 869 867.67 1.15 

APSB 4443 108 6 clear no neg neg neg 860 856 860 858.67 2.31 



73 

APSB 4446 374.4 5 clear no neg neg neg 850 848 847 848.33 1.53 

APSB 
4460 100.8 7 clear no neg neg neg 868 864 863 865.00 2.65 

APSB 
4463 72 7 clear no neg neg neg 872 871 876 873.00 2.65 

APSB 
4467 118.8 5 clear no neg neg neg 858 853 859 856.67 3.21 

APSB 4468  5 slight slight neg neg neg 853 853 856 854.00 1.73 

APSB 4469 95.4 7.5 clear no neg neg neg 856 857 851 854.67 3.21 

APSB 4470 86.4 7.5 clear no neg neg neg 870 865 865 866.67 2.89 

APSB 
4471 84.6 8 clear no neg neg neg 851 849 851 850.33 1.15 

APSB 
4474  6.5 clear no neg neg neg 845 850 848 847.67 2.52 

APSB 
4475  6 clear no neg neg neg 863 864 857 861.33 3.79 

APSB 4476  7 cloudy yes neg neg neg - - - - - 

APSB 
4477  5 

slightly 

cloudy 
slight neg neg neg 856 865 859 860.00 4.58 

APSB 
4478  6 

very 

cloudy 
yes neg neg neg - - -   

APSB 
4479  8.5 cloudy yes neg neg neg 858 854 859 857.00 2.65 

APSB 
4480  5 

slightly 

cloudy 
slight neg neg neg 855 850 851 852.00 2.65 

APSB 
4481  5 

very 

cloudy 
yes neg neg neg - - -  - 

APSB 
4482  6 clear no neg neg neg 831 824 822 825.67 4.73 

APSB 
4509  5.5 clear no neg neg neg 838 834 834 835.33 2.31 

APSB 4513  7.5 clear no neg neg neg 851 856 853 853.33 2.52 

APSB 
4514  6 

very 

cloudy 
yes neg neg neg - - -   

APSB 
4515  6 

very 

cloudy 
very neg neg neg - - -   

APSB 
4516  6.5 clear no neg neg neg 845 838 842 841.67 3.51 

APSB 
4523  6 cloudy 

bubble

s 
neg neg neg 763 745 748 752.00 9.64 

APSB 
4531  6.5 clear 

bubble

s 
neg neg neg 839 840 840 839.67 0.58 

APSB 
4544  5 clear 

bubble

s 
neg neg neg 838 836 836 836.67 1.15 

APSB 
4584 75.6 5 clear no neg neg neg 873 871 862 868.67 5.86 

APSB 
4561 79.2 7.5 

slightly 

cloudy 
no neg neg neg 833 835 838 835.33 2.52 

APSB 4572 81 6.5 clear no neg neg neg 867 864 870 867.00 3.00 

APSB 
4574 81 7 clear no neg neg neg 869 862 859 863.33 5.13 

APSB 
4580 84.6 5.5 

slightly 

cloudy 
no neg neg neg      

APSB 4556 88.2 7.5 clear no neg neg neg 857 856 857 856.67 0.58 

APSB 
4559 88.2 6.5 

slightly 

cloudy 
no neg neg neg      

APSB 
4583 90 7 clear no neg neg neg 858 853 856 855.67 2.52 

APSB 
4564 93.6 7.5 clear no neg neg neg 856 850 852 852.67 3.06 

APSB 
4560 99 5 

slightly 

cloudy 
no neg neg neg      

APSB 4581 100.8 6 clear no neg neg neg 863 855 858 858.67 4.04 

APSB 4570 108 7 clear no neg neg neg 835 826 822 827.67 6.66 

APSB 
4571 108 6 

very 

cloudy 
yes neg neg neg      

APSB 
4558 111.6 7.5 murky no 

1+0.3 

g/L 
neg neg      

APSB 4610 81 5.5 Cloudy slight neg neg neg - - - - - 

APSB 4611 84.6 7 Clear no neg neg neg 864 868 865 865.67 2.08 

APSB 
4608 88.2 7.5 Clear no neg neg neg 877 871 871 873.00 3.46 

APSB 
4627 90 7 clear no neg neg neg 861 864 866 863.67 2.52 
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APSB 4639 93.6 7.5 Clear no neg neg neg 851 853 849 851.00 2.00 

APSB 
4606 95.4 6.5 Clear no neg neg neg 866 868 862 865.33 3.06 

APSB 
4612 97.2 8.5 

Slightly 

cloudy 
no neg neg neg - - - - - 

APSB 
4628 100.8 9 

Slightly 

cloudy 
no 

1+0.3 

g/L 
neg neg 854 861 857 857.33 3.51 

APSB 
4605  7.5 

Slightly 

cloudy 
no neg neg neg 867 872 869 869.33 2.52 

APSB 
4635 100.8 6 Cloudy yes neg neg neg - - - - - 

APSB 
4630 104.4 5.5 

Slightly 

cloudy 
yes neg neg neg 849 855 852 852.00 3.00 

APSB 
4609 106.2 6 Clear no 

2+1.0 

g/L 
neg neg 870 873 872 871.67 1.53 

APSB 4640 115.2 6 Clear no neg neg neg 867 866 860 864.33 3.79 

APSB 
4644 115.2 7 Clear no neg neg neg 867 865 866 866.00 1.00 

APSB 
4623  6 Clear yes neg neg neg 867 864 866 865.67 1.53 

APSB 4625  7 clear yes neg neg neg - - - - - 

APSB 4637   Cloudy yes neg neg neg - - - - - 

APSB 
4604  7.5 

Slightly 

cloudy 
no neg neg neg 865 864 866 865.00 1.00 

APSB 
4634 189 5 Clear no neg neg neg 848 850 853 850.33 2.52 

APSB 
4656 86.4 7.5 clear no neg neg neg 861 860 863 861.33 1.53 

APSB 4661 88.2 7.5 clear no neg neg neg 858 858 854 856.67 2.31 

APSB 
4658 91.8 7 

slightly 

cloudy 
no neg neg neg 837 835 839 837.00 2.00 

APSB 4668 91.8 6.5 clear no neg neg neg 855 857 857 856.33 1.15 

APSB 
4657 93.6 5 cloudy yes neg neg neg - - - - - 

APSB 
4670 97.2 6 cloudy yes neg neg neg - - - - - 

APSB 
4659 106.2 7.5 clear slight neg neg neg 854 858 855 855.67 2.08 

APSB 4646(

2) 
106.2 7.5 clear no neg neg neg 835 835 835 835.00 0.00 

APSB 4667 115.2 5.5 clear no neg neg neg 853 852 855 853.33 1.53 

APSB 4646(

f) 
117 7.5 

slightly 

cloudy 
no neg neg neg 855 854 856 855.00 1.00 

APSB 4646(

1) 
198 7.5 clear no neg neg neg 848 849 845 847.33 2.08 

APSB 
4671 248.4 5.5 

slightly 

cloudy 
slight 

2+ 1 

g/L 
neg neg 845 844 845 844.67 0.58 

APSB 
4674  5 cloudy yes neg neg neg - - - - - 

APSB 
4678  7.5 clear no neg neg neg - - - - - 

APSB 
4684  7 clear no neg neg neg - - - - - 

APSB 4685  6 clear no neg neg neg - - - - - 

APSB 
4686  6 clear no neg neg neg - - - - - 

APSB 4727  5.5 Cloudy Yes neg neg neg - - - - - 

APSB 
4718 90 5.5 Clear No neg neg neg 867 872 869 869.33 2.52 

APSB 
4726 91.8 7 

Slightly 

Cloudy 
No neg neg neg 842 849 846 845.67 3.51 

APSB 4723 97.2 6.5 Clear No neg neg neg 867 869 869 868.33 1.15 

APSB 4701 97.2 5.5 Cloudy No neg neg neg - - -   

APSB 4703 99 6.5 Clear No neg neg neg 866 866 864 865.33 1.15 

APSB 
4702 104.4 5 Cloudy No neg neg neg - - -   

APSB 
4704 109.8 7.5 Clear No neg neg neg 869 869 867 868.33 1.15 

APSB 
4725 124.2 7.5 

Slightly 

Cloudy 
No neg neg neg 853 851 851 851.67 1.15 

APSB 
4728 127.8 5 

Slightly 

Cloudy 
No neg neg neg 850 846 851 849.00 2.65 

APSB 
4719 149.4 5.5 Clear No neg neg neg 854 851 847 850.67 3.51 
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APSB 4700 167.4 7 Clear No neg neg neg 846 842 844 844.00 2.00 

APSB 
4724 333 5.5 Clear No neg neg neg 836 837 838 837.00 1.00 

APSB 
4785 77.4 5.5 Clear No neg neg neg 869 873 864 868.67 4.51 

APSB 
4768 79.2 6.5 

Slightly 

Cloudy 
No neg neg neg - - - - - 

APSB 
4790 86.4 5.5 

Slightly 

Cloudy 
No neg neg neg 868 866 861 865.00 3.61 

APSB 
4791 86.4 6.5 

Slightly 

Cloudy 
Slight neg neg neg - - - - - 

APSB 
4766 93.6 5.5 Clear No neg neg neg 861 859 851 857.00 5.29 

APSB 4779 97.2 6.5 Clear No neg neg neg 862 863 859 861.33 2.08 

APSB 4797 97.2 5 Clear No neg neg neg 845 849 849 847.67 2.31 

APSB 4783 102.6 7.5 Clear No neg neg neg 867 867 862 865.33 2.89 

APSB 
4780 106.2 5.5 Clear No neg neg neg 871 870 869 870.00 1.00 

APSB 
4781 106.2 6.5 Clear No neg neg neg 859 853 853 855.00 3.46 

APSB 
4782 109.8 6.5 

Slightly 

Cloudy 
No neg neg neg 852 853 853 852.67 0.58 

APSB 4784 111.6 6 Clear No neg neg neg 872 865 875 870.67 5.13 

APSB 
4789 118.8 6 

Slightly 

Cloudy 
No neg neg neg 849 849 848 848.67 0.58 

APSB 
4850 88.2 6.5 No No neg neg neg 879 869 872 873.33 5.13 

APSB 
4837 90 6 Cloudy Yes neg neg neg - - - - - 

APSB 4856 90 6.5 No No neg neg neg 865 862 863 863.33 1.53 

APSB 4839 93.6 7.5 no No neg neg neg 847 850 848 848.33 1.53 

APSB 4853 93.6 5.5 No No neg neg neg 839 841 843 841.00 2.00 

APSB 4848 95.4 5.5 No No neg neg neg 863 861 - 862.00 1.41 

APSB 4840(

f) 
97.2 7.5 Cloudy Yes neg 

+- 0.5 

mmol/L 
neg - - - - - 

APSB 4843 97.2 7.5 No No neg neg neg 860 860 858 859.33 1.15 

APSB 4845 99 5.5 No Yes neg neg neg 847 842 846 845.00 2.65 

APSB 4846 104.4 7 No No neg neg neg - - - - - 

APSB 
4841 106.2 7 No No neg neg neg 854 850 857 853.67 3.51 

APSB 
4854 115.2 5 Slight Yes neg neg neg - - - - - 

APSB 
4844 135 6 No No 

2 + 1 

g/L 

+- 0.5 

mmol/L 
neg 834 838 833 835.00 2.65 

APSB 4840(

2) 
165.6 7 No No neg neg neg 855 855 850 853.33 2.89 

APSB 4840(

1) 
178.2 7 No No neg neg neg 839 846 849 844.67 5.13 

APSB 
4863 244.8 7.5 No No neg neg neg 845 845 842 844.00 1.73 

APSB 
4861 97.2 8.0 Clear No neg neg neg 865 866 865 865.33 0.58 

APSB 4864 97.2 6.5 Clear No neg neg neg 868 864 865 865.67 2.08 

APSB 4865 102.6 7.5 Clear No neg neg neg 867 864 866 865.67 1.53 

APSB 4869 84.6 6.0 Slight Yes neg neg neg - - - - - 

APSB 
4870 90.0 5.0 Clear No neg neg neg 860 860 867 862.33 4.04 

APSB 
4871 93.6 6.0 Slight Yes neg neg neg - - - - - 

APSB 
4872 174.6 6.0 Clear Slight neg neg neg 847 843 843 844.33 2.31 

APSB 4873 61.2 5.0 Clear No neg neg neg 874 872 871 872.33 1.53 

APSB 4874 97.2 5.0 Clear No neg neg neg 864 868 861 864.33 3.51 

APSB 4875 77.4 5.5 Clear No neg neg neg 869 866 869 868.00 1.73 

APSB 
4876 86.4 6.5 Cloudy Slight neg neg neg - - - - - 

APSB 
4877 99.0 6.0 Cloudy Yes neg neg neg - - - - - 
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APSB 4878 81.0 6.0 Slight Slight neg neg neg - - - - - 

APSB 
4880 104.4 7.0 Clear No neg neg neg 869 862 863 864.67 3.79 

APSB 
4881 90.0 8.0 Clear No neg neg neg 867 863 866 865.33 2.08 

APSB 
4898 90.0 7.0 Clear No neg neg neg 865 868 864 865.67 2.08 

APSB 
6002 91.8 6.5 Clear No neg neg neg 870 868 868 868.67 1.15 

PBP b13 81  Cloudy No    - - - - - 

PBP 
b17 84.6  Slightly 

Cloudy 
No    - - - - - 

PBP 
b11 100.8  Clear No    864 868 869 867.00 2.65 

PBP 
b5 113.4  Clear No    866 864 865 865.00 1.00 

PBP b1 120.6  Clear No    851 842 842 845.00 5.20 

PBP b9 122.4  Clear No    850 854 850 851.33 2.31 

PBP b4 126  Clear No    845 850 850 848.33 2.89 

PBP 
b2 133.2  Clear No    849 848 848 848.33 0.58 

PBP 
b15 135  Slightly 

Cloudy 
No    - - - - - 

PBP 
b3 138.6  Slightly 

Cloudy 
No    - - - - - 

PBP 
b12 140.4  Slightly 

Cloudy 
Yes    - - - - - 

PBP 
b18 156.6  Cloudy No    - - - - - 

PBP 
b19 171  Clear No    - - - - - 

PBP b7 176.4  Clear No    845 845 850 846.67 2.89 

PBP b10 205.2  Clear No    840 838 838 838.67 1.15 

PBP b16 234  Clear No    835 832 833 833.33 1.53 

PBP 
b14 279  Clear No    830 837 832 833.00 3.61 

PBP 
b8 487.8  Clear No    820 817 818 818.33 1.53 

PBP 
c17 81       868 868 865 867.00 1.73 

PBP c3 84.6       872 869 864 868.33 4.04 

PBP c9 84.6       864 861 865 863.33 2.08 

PBP c17 86.4       864 862 862 862.67 1.15 

PBP c4 86.4       863 862 863 862.67 0.58 

PBP 
c11 88.2  Slightly 

Cloudy 
Yes    843 846 849 846.00 3.00 

PBP c13 102.6  Cloudy Yes    - - - - - 

PBP 
c20 115.2  Slightly 

Cloudy 
No    838 838 830 835.33 4.62 

PBP c10 117       858 863 861 860.67 2.52 

PBP 
c12 118.8       858 862 860 860.00 2.00 

PBP 
c18 135       854 850 847 850.33 3.51 

PBP 
c5 142.2       840 842 848 843.33 4.16 

PBP c21 142.2       844 839 843 842.00 2.65 

PBP c7 156.6       845 841 841 842.33 2.31 

PBP c16 180       850 850 852 850.67 1.15 

PBP 
c19 180       838 838 836 837.33 1.15 

PBP 
c15 210.6  Cloudy No    - - - - - 

PBP 
c14 286.2       835 830 830 831.67 2.89 

PBP 
c8 349.2       826 828 820 824.67 4.16 
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Fasting glucose levels that are considered positive for diabetes. 

 
Samples unable to be used with smartphone-based laser refractometer. 

 

Figure B: Smartphone-based laser refractometer (pixels) vs fasting glucose concentration 

(mg/dL) 
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