Experimentation and prediction of machining characteristics in laser-assisted high speed milling of aluminium alloy using vegetable-based cutting fluids

Farhana Yasmin

Supervisor: Dr. Khairul Fikri Tamrin

Presentation Outline

Problem Statement

• Objective

- Methodology
- Expected Outcome

High-speed milling

Feature:

- Feed rate increment
- Rise of cutting speed

Applications:

- Aluminum alloy [Khorasani et.al. 2016]
- Titanium alloy [A. Li et.al. 2012]
- Inconel [A. Çelik et al. 2017]

Benefits:

- Increase in surface finish with high cutting speed (i.e. 4500 m/min) [Zhong et al. 2015]
- Increase in quality of surface with high feed rate (i.e. 0.41-0.45 m/min) [Khorasani et al. 2016]

Laser-assisted high-speed milling

• Able to lower the material strength by thermally soften the material surface in the cutting area for easy machining.

Advantages:

• Improvement of surface finish (i.e, 25% at cutting speed of 500 m/min with the feed rate of 0.5 mm/rev) [Attia et al. 2010]

However,

Shorter tool life at high laser power [Ito et al. 2017]

Advantages of the use of vegetable-based cutting fluid:

- Improvement of tool life (i.e, five times compared to conventional laser-assisted milling (dry machining)) [Bermingham et al. 2015]
- Reduction in surface roughness, cutting forces and cutting temperatures compared to dry and conventional cutting fluid [Padmini et al. 2016]

Ultrasonic-assisted milling

Advantages:

- Good surface topography [Razfar et al. 2011]
- High surface finish [Shen et al. 2012]
- Reduced cutting force [Verma et al. 2019.]

Limitation:

- Low cutting speed [Razfar et al. 2011]
- Low feed rate

Problem Statement

- 1. Ultrasonic-assisted milling is favorable to obtain improved surface finish but high-frequency vibration (generally greater than 20 kHz) usually applied to a tool or a workpiece, making it not viable for the application in high speed machining.
- 2. No previous study on the application of ultrasonic-induced vegetable-based cutting fluids (palm oil and sago starch) on machining characteristics of aluminium alloy.

Objectives

To investigate the effects of ultrasonic-induced vegetable-based cutting fluids (palm oil and sago starch) on machining characteristics of aluminium alloy.

arunnun anoy.

To determine optimum machining parameters by response surface methodology (RSM).

To predict the machining characteristics by extreme learning machine (ELM), and compare with the experiment.

Methodology (Objective 1)

Cutting fluid delivery system

Fig. 1. Schematic diagram of experimental setup

Methodology (Objective 1)

Table 1: The chemical requirements to prepare the watersoluble sago starch

Chemical Properties	Quantity
Distilled water	11 L
Sago Starch	5 g
Sodium Carbonate	50 g
Sodium Hydrogencarbonate	30 g
Sodium Bromide	1 g
Sodium Fluoride	5 g
Ethanol	2 cc
Dehydroacetic acid	0.5 g
m-Cresol	25 g
Sodium dodecyl-benzene sulfonate	25 g
Rust Preventive Agent (Linoleic acid)	10 cc

Methodology (Objective 1)

• Preliminary experiments by changing parameters: **feed rate, laser power, fluid flow rate**.

Methodology (Objective 2)

Optimization of machining parameters by response surface methodology (RSM)

1.9

1.8

1.7

1.6

650

Flank

wear (µm)

Regression model for the optimization:

- 1. Least-squares method
- 2. A second order polynomial equation

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i< j}^k \beta_{ij} x_i x_j + \varepsilon$$

Predicted response

value

Methodology (Objective 3)

Prediction of the machining characteristics by Extreme Learning Machine (ELM)

Single hidden-layered feed-forward neural networks

Why extreme learning machine (ELM)?

- Faster learning speed
- The smallest training error and norm of weights

Methodology (Objective 3)

Prediction of the machining characteristics by Extreme Learning Machine (ELM)

Run	Surface roughness (Ra) / flank wear (VB)														
	P	alm oil	Sago starch												
	Experimentation (µm)	Prediction (µm)	Error %	Experimentation (µm)	Prediction (µm)	Error %									
1															
2															
3															

Expected outcome

Ultrasonic-induced droplet cutting fluid

Acoustic cavitation mechanism

Lubricity of oil

Remove micro-chips

Expected outcome

Vegetable-based cutting fluids (palm oil and sago starch)

Gantt Chart / Milestones

	2019							2020												
Month	A P R	M A Y	л Г И	U U J	A U G	이프 무	чио	чо И	D H C	J A N	두뜨 쯔	M A R	A P R	M A Y	ы И Г	1 U L	A U G	보표 12	O C T	N O V
Task	1	2	3	4	5	6	7	8	9	1 0	1 1	1	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0
Chapter 2- Literature review																				
Assembling the experimental setup																				
Chapter 3- Methodology																				
Chapter 1- Introduction																				
Proposal Defense																				
Review paper																				
Performing experiments and prediction																				
Data analysis and result comparison																				
Chapter 4- Results and discussion																				
Chapter 5- Conclusion																				
Paper																				
VIVA																				

References

- A.M. Khorasani, I. Gibson, M. Goldberg, E.H. Doeven, and G. Littlefair, *Investigation on the effect of cutting fluid pressure* on surface quality measurement in high speed thread milling of brass alloy (C3600) and aluminium alloy (5083). Measurement, 2016. 82: p. 55-63.
- 2. A. Li, J. Zhao, H. Luo, Z. Pei, and Z. Wang, Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools. The International Journal of Advanced Manufacturing Technology, 2012. 58(5-8): p. 465-478.
- 3. A. Çelik, M.S. Alağaç, S. Turan, A. Kara, and F. Kara, Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718. Wear, 2017. 378: p. 58-67.
- 4. Z. Zhong, X. Ai, Z. Liu, J. Liu, and Q. Xu, Surface morphology and microcrack formation for 7050-T7451 aluminum alloy in high speed milling. The International Journal of Advanced Manufacturing Technology, 2015. 78(1-4): p. 281-296.
- 5. Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, *High-efficiency and precision cutting of glass by selective laser-assisted milling*. Precision Engineering, 2017. **47**: p. 498-507.
- 6. M. Bermingham, W. Sim, D. Kent, S. Gardiner, and M. Dargusch, *Tool life and wear mechanisms in laser assisted milling Ti–6Al–4V*. Wear, 2015. **322**: p. 151-163.
- 7. H. Attia, S. Tavakoli, R. Vargas, and V. Thomson, Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP annals, 2010. 59(1): p. 83-88.
- 8. X.-H. Shen, J. Zhang, D.X. Xing, and Y. Zhao, *A study of surface roughness variation in ultrasonic vibration-assisted milling*. The International Journal of Advanced Manufacturing Technology, 2012. **58**(5-8): p. 553-561.
- 9. R. Padmini, P.V. Krishna, and G.K.M. Rao, Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribology International, 2016. 94: p. 490-501.
- M. Razfar, P. Sarvi, and M.A. Zarchi, Experimental investigation of the surface roughness in ultrasonic-assisted milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011. 225(9): p. 1615-1620.

Research paper

- 1. F. Yasmin, K. F. Tamrin, and N.A. Sheikh, *Laser-assisted high speed* machining of aluminium alloy: the effect of ultrasonic-induced droplet vegetable-based cutting fluid on surface roughness and tool wear. Lasers in Engineering, 2020. (Accepted)
- 2. F. Yasmin, K. F. Tamrin, N. A. Sheikh, and S. S. Zakariyah, *Extreme Learning Machine in Laser-assisted High Speed Milling using Ultrasonic-induced Cutting Fluid*. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. (Under review)

